
58 The Delphi Magazine Issue 57

Push The Limits
This month: a collection of tips and tricks
for performance and optimization

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

This morning my wife, Donna,
and I went to a local café for

breakfast. I was a bit uncommuni-
cative and she asked me what was
wrong. I explained the problem: I
had to write this column, I was late,
and I was fresh out of ideas for a
good topic. After telling me off for
being late (Our Esteemed Editor
seems to have acquired Donna’s
email address, methinks), she
started firing off a few ideas. Did I
write Part 1 of a pair of articles a
couple of months back and there-
fore should I write Part 2? The only
thing I could come up with was Part
2 of my series on encryption, but I
want to write that in England on my
next trip, for obvious reasons. How
about a set of algorithmic tips and
tricks? I replied that I leave that to
my Father Christmas articles.

However, that idea got me think-
ing. A couple of months back I
wrote Chapter 1 of my Algorithms
book. It was on performance
issues: talking about the big-Oh
notation, memory paging, using
the cache, memory versus speed,
and so on. Also, a couple of weeks
or so ago, I spent a few days doing
an intensive code review on one of
TurboPower’s new products
(Internet Professional should be out
by the time you read this: end of
gratuitous plug!) and had culled a
set of performance-related tips
from that process.

So, bear with me, gentle reader,
as I dedicate this article to explor-
ing various performance tips and

optimization tricks. You should
find one or two nuggets here that
will help you in your own develop-
ment. I warn you that, this month,
the code will only work with a
32-bit version of Delphi, but some
results will also apply to Delphi 1.

Endless Quest
The first thing I should immedi-
ately state is that performing any
kind of optimization process is
impossible to do without measure-
ment. You need to measure how
your program runs, the speed with
which it performs a particular
operation. You need to take these
measurement statistics and, apply-
ing your knowledge of Delphi, algo-
rithms and data structures, alter
the routine(s) to be faster (hope-
fully), and then measure the opera-
tion’s speed again. If there was no
improvement, or it was worse, you
might as well ignore those
changes. If there was an improve-
ment, well, award yourself a pastry
from the local bakery.

Notice the emphasis on mea-
surement: you cannot know how
good your optimization efforts are
without measuring the before and
after runtime characteristics.
Simply plugging in another algo-
rithm, just because someone (even
Donald Knuth) says it’s better, is
simple delusion. It may well be that
the attributes of your process
mean that the supposed more
efficient algorithm is anything but.

So, how do you measure the
speed of a program, an operation,
or a routine? The easiest answer is
to use a profiler. There are two

non-intrusive profilers for Delphi
that I know of: Sleuth QA Suite from
TurboPower and QTime from
Automated QA, Inc. Don’t rely on
me to recommend one, I’m biased!
See what other people say [Both
have been reviewed in Developers
Review recently. Ed]. What I do rec-
ommend is that you buy one and
use it. You can get away with
timing using Windows’ GetTick-
Count, but it’s intrusive (you have
to alter your source code to per-
form timing operations) and it’s
not very accurate (both of the
aforementioned products use spe-
cial programming tricks to get
accurate timing values). You
could, if you were perverse
enough, use a profiler that alters
your source code to add profiling
calls, but my experience with
these has not been good.

I realize that all of my readers
may not have access to a profiler,
so I’ve written the code this month
to use the results from GetTick-
Count calls to time operations. This
is easy for me, since the routines
I’ll be presenting are all isolated
and independent and hence lend
themselves to being incorporated
in a driver program for timing pur-
poses. You’ll see what I mean as I
go into more depth. If you do not
have access to a profiler, using this
technique (that is, isolating the
routine and writing a driver pro-
gram to do the timing) is far better
than altering your magnum opus
by inserting calls to GetTickCount.

TNT For The Brain
What I would like to do now is to
introduce the big-Oh notation.
Instead of jumping right in and

function SeqSearch(aStrs : PStringArray; aCount : integer;
const aName : string5) : integer;

var
i : integer;

begin
for i := 0 to pred(aCount) do
if CompareText(aStrs^[i], aName) = 0 then begin
Result := i;
Exit;

end;
Result := -1;

end;

➤ Listing 1: Sequential search to
find an item in a list.

May 2000 The Delphi Magazine 59

throwing around big-Oh of this,
big-Oh of that, let’s start off with a
simple example. You have a TList
of customer records, sorted by last
name, and you want to find Mr
Smith in the list. A simple database-
like query, in other words. As a first
stab, you might try Listing 1.

This routine shows a simple
sequential search through the list.
You start at the beginning of the
list, visit every item in it, and, for
each item, compare the last name
to Smith. Simple enough.

For this article, we’ll do a little
more than just testing that the rou-
tine works. We’ll time it. What I did
was to write a small driver program
that creates a list with a varying
number of items, sort it, obviously,
and time how long it takes to find
the required item. Table 1 shows
the results for 100, 1,000, 10,000
and 100,000 items as run on my
work machine. Even without any
formal mathematical training, I’m
sure you can see the relationship
between the time taken for the rou-
tine to find an item and the number
of items in the list. For ten times the
number of items, it takes about ten
times the time to find a particular
item. The relationship is linear. In
algebraic terms:

Time taken = k * number of items

Where k is some constant value
that depends on the machine, the
operating system, or the environ-
ment in which the program is
running.

Using this relationship we can
easily predict the time it would
take for 500 or 5,000 items. If you
have a scientific calculator with
linear regression capabilities, it’ll
tell you what the value of k is for
your machine, and therefore the

time taken for a given number of
items.

After checking back issues of
The Delphi Magazine, you may
have come across the article
where I showed binary search. You
decide to apply it and come up with
Listing 2.

Binary search makes use of the
fact that the list is sorted. You look
at the middle item in the list. There
are three possibilities: the item is
the one you want (hooray, you
found the item so you can stop
straightaway), the item is less than
the one you want, or the item is
greater than the one you want. In
the second case, you can immedi-
ately deduce that the item must be
found in the latter half of the list. In
the last case, you can deduce that
the item must be in the initial half
of the list. Either way, you can
ignore half of the list and concen-
trate on the other half. Again you
look at the middle item, but of the
half of the list you’ve isolated.
Again you either found the item or
you can ignore half of this half of
the list. You continue in this fash-
ion, slicing and dicing the list, until
you’ve got a sub-sub-sub-list with
only one item that either is the one
you want or it isn’t. In the latter
case, this shows that the item you
were looking for isn’t in the list.

Once more, after testing that the
routine works and finds a given
item, we time it (this is a simple
rule: there’s no point in timing
something that doesn’t work!). I
profiled the binary search with the
same 100, 1,000, 10,000 and 100,000
items. The timing results are
shown in Table 2. The relationship
between number of items and
speed doesn’t look as obvious as

before. For ten times the number
of items, the time taken for the rou-
tine to execute increases by a con-
stant amount. What kind of
relationship is this? Think back to
your secondary school days when
you learned about logarithms. To
multiply a number by a factor, you
would take the logarithm of the
number and add the logarithm of
the value, and then take the anti-
logarithm of the result. (Am I show-
ing my age by revealing that this is
how I learned how to do long-
winded calculations?) Anyway,
this process gives us a hint that the
relationship is a logarithmic one:

Time taken =
k * log(number of items)

Where, again, k is some constant
or other determined from our
runtime statistics. I deliberately
didn’t say which logarithmic base
I’m using: it doesn’t matter. It
could be base e, or base 10, or base
2; the relationship is the same, the
only difference being the value of
the constant k.

With some minor speed testing
we’ve determined some important
results. Sequential search is a

Number Of Items Time Taken

100 1.49

1,000 15.28

10,000 145.60

100,000 1449.34

➤ Table 1:
Timing a sequential search.

function BinarySearch(aStrs : PStringArray; aCount : integer;
const aName : string5) : integer;

var
L, R, M : integer;
CompareResult : integer;

begin
L := 0;
R := pred(aCount);
while (L <= R) do begin
M := (L + R) div 2;
CompareResult := CompareText(aStrs^[M], aName);
if (CompareResult = 0) then begin
Result := M;
Exit;

end else if (CompareResult < 0) then
L := M + 1

else
R := M - 1;

end;
Result := -1;

end;

➤ Listing Listing 2: Binary search
to find an item in a list.

➤ Table 2: Timing binary search.

Number Of Items Time Taken

100 0.48

1,000 0.99

10,000 1.56

100,000 2.02

60 The Delphi Magazine Issue 57

linear process: the time taken is
proportional to the number of
items. Binary search, on the other
hand, is a logarithmic process: the
time taken is proportional to the
log of the number of items.

This is getting entirely too long-
winded, we need a succinct nota-
tion to describe these conclusions.
Enter the big-Oh notation. We say
that sequential search is O(n) and
binary search is O(log(n)). We read
the notation as ‘for a sufficiently
large value of n, the number of
items, sequential search takes time
proportional to n,’ and, ‘for a suffi-
ciently large value of n, the number
of items, sequential search takes
time proportional to log(n).’

A quick note to all you computer
science purists out there who are
jumping up and down saying that
what I’ve just said is a gross over-
simplification. Yes, I know that I’m
simplifying the actual definition of
the big-Oh notation. My purpose in
this article is not to overwhelm the
reader with too much mathemati-
cal jargon, but to lay a foundation
for understanding any big-Oh num-
bers they may come across in my
articles, or anywhere else for that
matter. In the same vein, I won’t be
describing Theta or Omega func-
tions, or introducing the term
asymptotic. And now we return you
to our normal programming.

As you have seen, the big-Oh
notation is a succinct way to
describe the runtime characteris-
tics of an algorithm or operation.
Having introduced the notation,
you should be able to read and
understand the terms O(n2), or
O(nlog(n)), or any other big-Oh
term that anyone throws at you.

Morphing Thru Time
Now, looking at the big-Oh values
for binary and sequential search
and knowing that the log of a posi-
tive integer is always less than the
number itself (the proof being left
as an exercise for the reader!), we
could make the deduction that
binary search is always faster than
sequential search. Is this deduc-
tion valid? Is binary search always
faster than sequential search?

This is one area where the
big-Oh notation lets us down. The

notation tells us what happens for
sufficiently large values of n. For
small values of n, the notation
doesn’t help; in fact, it doesn’t tell
us anything. For our example of
sequential versus binary search,
consider which one might be faster
for one item, or three items. Binary
search has more set up or initial-
ization code than sequential
search, which uses a fast for loop
instead. For items where we are
comparing strings for equality (a
slow process) I would estimate
that three items is the point at
which using binary search takes
over from sequential search. For a
faster comparison operation, say
comparing two integers, the break
point might be larger. Only experi-
ment will show us.

The reason for this uncertainty
lies in the proportionality con-
stants we’re using. For example, by
experimenting with two algo-
rithms X and Y, we may deduce the
following timing formulae:

Time for X = 100 * n

Time for Y = 1000 * ln(n) + 100

In other words, we can immedi-
ately say that X is O(n) and Y is
O(log(n)).

So, which is faster? We may ini-
tially just go with Y since log(n)<n,
but that is only half the story. If
n=1, then X and Y both take 100
units of time. For n=2, X takes 200
units, Y 793 units. For n=10, X takes
1000 units, Y 2402 units. Even-
tually, with n=38, X takes 3800 units
and Y 3787 units, the first time that
X takes longer than Y. Thereafter,
for increasing n, Y is always faster.
So, you see the big-Oh notation
does not obviate speed testing. In
this admittedly contrived example,
we may find that we never have
more than 30 items to run through
algorithm X or Y, so we should go
with X, even though Y has a ‘better’
big-Oh value.

So far, I’ve just been talking
about time efficiency; that is, how
fast a routine is, how quickly it runs
for different amounts of input.
We’ve seen that the big-Oh nota-
tion tells us succinctly how effi-
ciently a routine runs. There is

another set of measurements we
can make: space efficiency, or how
much memory a routine con-
sumes. The big-Oh notation can be
used for this as well. If we say that a
routine consumes O(n) of heap
space, we mean that, for suffi-
ciently large n, the routine
requires an amount of space on the
heap that is proportional to n. Lots
of routines we use only require
O(1) of space, that is, a constant
amount of memory. A simple
example should make this clear,
that doesn’t require me to write
any code to explain it (lazy, moi?).

Suppose you were writing a file
copy routine. There are two main
algorithms you could use. The first
one requires O(n) extra memory:
allocate a buffer big enough to
read the entire source file into
memory, do so, and then write it
out to the destination file. All I can
say about this one is it gives me the
shivers. Brrr. The second algo-
rithm is the one people normally
implement: allocate a buffer of
some predetermined size (say,
4Kb), and enter a loop where you
read 4Kb from the source file and
write this buffer-full to the destina-
tion file. Continue cycling round
this loop until the source file is
exhausted. This is a routine with
O(1) space requirements, and, I’m
sure you will agree, much more
manageable.

Out From The Deep
Many times, algorithm writers
introduce the notion that different
algorithms to perform the same
job have space versus time
trade-offs. A faster algorithm may
require more memory than a
slower one. This is by no means a
universal law, but it does crop up
often enough to merit discussion.

Suppose you wanted a routine to
calculate the number of days in a
particular month of a given year.
You remember the nursery rhyme
from your childhood: ‘30 days hath
September, April, June and
November, ...’ and you know the
rule for determining whether a
year is a leap year or not, so you
code Listing 3. It’s a simple enough
routine (the only difficult bit really
is the determination of leap year).

62 The Delphi Magazine Issue 57

It takes 6.3 seconds on my machine
to do 168 million iterations. Pretty
fast, I’m sure you’ll agree.

Those of my readers who’ve
been reading these articles for a
while will know a better way of
doing this calculation. You define
an array of integers to hold the
numbers of days in each month,
and then index into that. The only
‘difficult’ case is again that of Feb-
ruary. Listing 4 shows this routine.
It takes 4.6 seconds on my
machine, a saving of 27%. Not to be
sneezed at, especially for such a
self-contained routine. And the
cost for this saving is a small array
of integers.

This is a small example of what is
meant by a space versus time
trade-off. The faster algorithm
requires an array of pre-calculated
values in order to speed things up.
The slower algorithm does not
require this array. Now it might be
argued that the price to pay for the
faster routine and its measly extra
48 bytes of constant values is well
worth it. But this is just one routine
out of many thousands in a typical
application. If many of these rou-
tines also had constant arrays in
order to speed them up, the appli-
cation as a whole would be much
larger. It would take longer to load
the program and present the initial
window to the user. This problem
is another aspect of the time

versus space trade-off: for the sake
of faster routines during runtime,
the application takes longer to load
and start up.

Beyond The Invisible
Up to now, we’ve been very theo-
retical about optimization and per-
formance issues. Let’s be a little
more concrete and discuss a few
optimization tricks specifically for
Delphi. We’ll use my favorite type:
the long string. Favorite in a cyni-
cal sense, of course: although the
type was invented for making our
lives easier, it does come with a lot
of performance disabling baggage.

Long strings are a boon to the
Delphi developer: they can be very
long indeed, they’re reference
counted so string assignments
take virtually no time, the compiler
makes sure that when we alter a
string we have our own copy, and it
also makes sure to free local
strings from the heap when neces-
sary. However, you should be
aware of what goes on underneath.

Let’s take the first one: when
writing a routine, should you use
const with long string parameters?
In the old days, with Delphi 1 and
Borland Pascal 7 and earlier, you
learnt that using const for a string
parameter was A Good Thing. It
avoided a compiler-generated
copy of the string being passed
onto the stack. (Since you had not

declared the string parameter as
const, the compiler would assume
that you were going to change the
string inside the routine and there-
fore would copy the string to avoid
any changes to the caller’s string.)
In 32-bit Delphi, the long string is a
pointer to a specially formatted
block of memory on the heap;
therefore, since a pointer is the
size of a register in the CPU, so the
reasoning goes, you don’t need to
use const.

In effect, the compiler makes the
same assumption about the string
parameter as in the old days. How-
ever, this time it doesn’t make a
copy of the string (excellent!) but
instead it increments the string’s
reference count (even better!). At
the end of the routine, it decre-
ments the string’s count as we
leave the routine. All in all it seems
like the ideal situation: no copying,
and a mere couple of twiddles with
the reference count. In reality,
though, the situation is different.

Let’s use a simple routine that
counts the alphabetic characters
in a string (no, I don’t know what
you’d use this for, but it makes a
great illustration of what we’re dis-
cussing). Listing 5 shows the rou-
tine declared with a non-const
string parameter and also a ver-
sion with a const parameter. The
only difference, as you can see, is
the keyword const. We’ll create a
test bed driver program and time
both routines. On my machine, the
const version takes 4.4 seconds
whereas the other 5.0 seconds for
10 million iterations. Why such a
big difference of 12%?

The reason is that the compiler
implements a try..finally block
for the first routine, the non-const
one. It declares a hidden local
string variable, sets it equal to the
passed in string, and increments
the reference count for the
pointed-to string. It then sets up a
try block before going into the
code we actually wrote. At the end
of the routine, a finally block is
created to clear the automati-
cally-created local string variable,
which decrements the reference
count for the string on the heap. An
awful lot of new code is inserted
for us, just because we could not

function CalcDaysInMonth1(Month, Year : integer) : integer;
begin
if (Month = 4) or (Month = 6) or (Month = 9) or (Month = 11) then
Result := 30

else if (Month = 2) then begin
if (((Year div 4) = 0) and

(((Year div 100) <> 0) or ((Year div 400) = 0))) then
Result := 29

else
Result := 28

end else
Result := 31;

end;

function CalcDaysInMonth2(Month, Year : integer) : integer;
const
DaysInMonth : array [1..12] of integer =
(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);

begin
Result := DaysInMonth[Month];
if (Month = 2) then begin
if (((Year div 4) = 0) and

(((Year div 100) <> 0) or ((Year div 400) = 0))) then
Result := 29;

end;
end;

➤ Listing 3: Calculating the number of days in a month.

➤ Listing 4: Calculating the number of days in a month faster.

64 The Delphi Magazine Issue 57

be bothered to declare the string
parameter as const. So, the rule is,
if you pass a string into a routine,
and nothing in that routine alters
it, declare the string as const.

Next up for discussion is a trick
where again the compiler is oh-so-
obliging, but which results in a
less-than-efficient bit of code.
Many times we may try to find a
character in a long string by coding
something like this:

PosOfCh := Pos(Ch, St);

In other words, Ch is the character
for which we’re looking in the
string St. Looks innocent enough?

Again the compiler works over-
time behind our back. The declara-
tion for Pos in the System unit has
the first parameter as a string. The
compiler notices that we’re pass-
ing a single character instead, so
what does it do? That’s right, it
declares another hidden local
string variable, calls a special rou-
tine in the System unit that allo-
cates a single character string on
the heap (_LStrFromChar), and then
calls Pos. Of course, this string
must be deallocated at some time,
and so another try..finally block
comes into play. Yuk.

I timed the difference between
the normal way of calculating the
position of a character in a string
with Pos with a simple Pascal rou-
tine that searches for the character
in a loop and it was over five times
slower. Listing 6 shows the simple
Pascal routine that outdoes Pos in
this situation. Not only is it faster,
but this PosCh routine is even more

functional than Pos: you can decide
where in the string to start the
search. I recommend that you use
this PosCh function instead of Pos
for the times when you are looking
for a character within a string.

Another, similar, case is using
mixed string types with Pos.
Searching for a short string in a
long string will require a tempo-
rary long string being allocated.
Indeed, this becomes another
steadfast rule: don’t mix string
types. If you are going to use long
strings, don’t use short strings,
and vice-versa. Although your
code will work, it will be less than
efficient. (When I was writing
FlashFiler, TurboPower’s data-
base engine, all those years ago, I
wrote a whole series of short string
routines, trimming, path manipula-
tion and the like, so that I was sure
that I wouldn’t inadvertently call a
routine that would convert a short
string to a long string and vice
versa.)

Second Chapter
What’s next? Exposing some evil
System string routines, that’s what.
Listing 7 shows a small routine that
performs a specific type of search
and replace operation on a string.

function CountAlpha1(S : string) : integer;
var
i : integer;

begin
Result := 0;
for i := 1 to length(S) do
if (S[i] in ['A'..'Z','a'..'z']) then
inc(Result);

end;
function CountAlpha2(const S : string) : integer;
var
i : integer;

begin
Result := 0;
for i := 1 to length(S) do
if (S[i] in ['A'..'Z','a'..'z']) then
inc(Result);

end;

function PosCh(aCh : char; const S : string; aStart : integer) : integer;
var
i : integer;

begin
if (aStart < 1) then
aStart := 1;

for i := aStart to length(S) do
if (S[i] = aCh) then begin
Result := i;
Exit;

end;
Result := 0;

end;

➤ Listing 5: Two routines to count alphabetic characters in a string.

➤ Listing 6: Fast routine to find a character in a string.

➤ Listing 7: Replacing escape
sequences in a string.

function ConvertEscapes1(const aSt : string) : string;
var
i : integer;
PosEscape: integer;
ASCIIStr : string;
ASCIIVal : integer;
ec : integer;

begin
Result := aSt;
i := 1;
while i <= length(Result) do begin
{find the next escape character in the remaining string}
PosEscape := PosCh('\', Result, i);
{if there is no escape, exit}
if (PosEscape = 0) then
Exit;

{if this position is right at the end of the string, exit, we're done}
if PosEscape = length(Result) then
Exit;

{if the next character is an backslash, then replace the
double backslash by just one of them}

if (Result[PosEscape+1] = '\') then
Delete(Result, PosEscape, 1)

else if (Result[PosEscape+1] in ['0'..'9']) and
(PosEscape <= length(Result) - 3) then begin
{if the next character is a digit, there should be three of them, convert
the four characters \nnn to an ASCII character, ignore all errors (ie,
don't convert the backslash)}
ASCIIStr := Copy(Result, PosEscape+1, 3);
Val(ASCIIStr, ASCIIVal, ec);
if (ec = 0) and (ASCIIVal <= 255) then begin
Delete(Result, PosEscape, 4);
Insert(char(ASCIIVal), Result, PosEscape);

end;
end;
i := PosEscape + 1;

end;
end;

May 2000 The Delphi Magazine 65

We are searching in the source
string for all occurrences of char-
acter sequences of the form \nnn
and replacing them with the ASCII
character defined by nnn. A \\
sequence is replaced by a single \.
This is a fairly typical routine for
some types of application where
you want the user to be able to
enter characters that are not on his
or her keyboard. The sequences

starting with a \ are known as
escape sequences.

The routine in Listing 7 works by
copying the input string to the
result and then finding and replac-
ing the escape sequences. The
replacements are done by deleting
the sequence with Delete and
inserting the replacement charac-
ter with Insert. The routine works,
but, boy, is it inefficient. We seem

to have taken to heart the previous
recommendations: the input string
is a const parameter, we’re using
the proper search-for-a-character
function. For a million repetitions
on my machine it takes 3.33
seconds.

➤ Listing 8. A better way to
replace escape sequences
in a string.

function ConvertEscapes(const aSt : string) : string;
var
DestInx : integer;
SourceInx : integer;
ASCIIStr : string;
ASCIIVal : integer;
ec : integer;

begin
{assume that we won't convert any escapes: the result
string will be the same length as the source}

SetLength(Result, length(aSt));
{go through the source, character by character}
DestInx := 0;
SourceInx := 1;
while SourceInx <= length(aSt) do begin
{non-escape characters pass straight through}
if (aSt[SourceInx] <> '\') then begin
inc(DestInx);
Result[DestInx] := aSt[SourceInx];
inc(SourceInx);

end else begin
{otherwise it's an escape character}
{if the escape is at the end of source string, pass
it through: there cannot be any other characters
to convert}
if (SourceInx = length(aSt)) then begin
inc(DestInx);
Result[DestInx] := '\';
inc(SourceInx);

end else if (aSt[SourceInx+1] = '\') then begin
{if it's the first of a double escape, pass a single
one through to the result string}
inc(DestInx);
Result[DestInx] := '\';
inc(SourceInx, 2);

end else if (aSt[SourceInx+1] in ['0'..'9']) and
(SourceInx <= length(aSt) - 3) then begin
ASCIIStr := Copy(aSt, SourceInx+1, 3);
Val(ASCIIStr, ASCIIVal, ec);
if (ec = 0) and (ASCIIVal <= 255) then begin
inc(DestInx);
Result[DestInx] := char(ASCIIVal);
inc(SourceInx, 4);

end;
end else begin
{otherwise it *is* an escape character, but part
of a badly formed sequence: just pass it through}
inc(DestInx);
Result[DestInx] := '\';
inc(SourceInx);

end;
end;

end;
{finally set the correct length of the result: DestInx is
the index of the last character written}

SetLength(Result, DestInx);
end;

66 The Delphi Magazine Issue 57

The problem, though, is the calls
to Delete and Insert. Each of them
causes the result string to be real-
located on the heap. For a lengthy
input string with lots of escape
sequences, these two routines
would be called an awful lot. There
would be string reallocations
galore. Indeed, the number of
reallocations would be propor-
tional to the number of escape
sequences in the original string:
the function is O(n) with respect to
memory allocations, in other
words.

Better would be to use Listing 8.
This routine specifically makes
sure that there are only two alloca-
tions for the result string. First, we
assume that there would be no
escape sequence replacements at
all. We assume that the result
string will be equal in length to the
output string. Then, we transfer
characters one by one from the
source string to the result string. If
we encounter an escape character,
we convert the sequence it intro-
duces and transfer the resulting
character to the result string.
Finally, we adjust the length of the
result string to comply with the
number of characters we trans-
ferred. Two memory allocations,
no matter how many escape
sequences in the original string, is
an O(1) algorithm. Consequently, it
should come as no surprise that
Listing 8 takes just under 1 second
for a million repetitions: three
times as fast.

Note that in Listing 8 I am cheat-
ing a little: I’m using a long string to
hold the nnn part of an ASCII
escape sequence, and then con-
verting from that. This is of course
a memory allocation. If I were
writing this function for real, I
would of course use a different

methodology to convert the \nnn
sequences. My reason for this
example is to warn against the
Delete and Insert procedures from
the System unit, especially in loops
like this.

In general, for functions of this
type where we are generating a
result long string from some kind
of input, it is better to over-
estimate the length of the result
string and then re-adjust at the
end, than to incur a series of
memory reallocations throughout
the routine. Listing 9 drives this
point home with a routine that,
given an input string, returns a
string containing just the unique
characters in the input string. The
first implementation uses the
string + concatenation operator to
build up the string. The second
estimates that the result string is
going to be at least the length of the
input string, and then readjusts at
the end. Both routines have to read
through the entire string, an O(n)
process. The first routine is highly
dependent on the number of
unique characters: the search with
PosCh is an O(n) routine, where n is
the number of unique characters.
The second routine, on the other
hand, is an O(1) routine as far as
searching for unique characters:
we’re using a set of characters to
hold the unique ones found. The
generation of the result string is
O(n) in the first case (we’re concat-
enating characters one by one on
the end of the result string, which
results in some memory realloc-
ations). In the second case, we only
have two memory allocations, as
discussed before. Experimental
evidence backs this up. If we are
processing an input string that just
consists of repetitions of a and b,
then the first routine is faster than

the second. If, however, the input
string consists of mainly different
characters, with only a few repeti-
tions, the second routine is faster.
If you had need of a function that
performed this operation, you
would have to analyse whether
your input was strings with lots of
duplicates or not many duplicates
and use the appropriate function.

With this routine we have rein-
forced what I was saying earlier:
although big-Oh values tell us
something about a routine, they
don’t tell us the whole story. We
must experiment and measure the
effect different routines have in
our applications, not just take as
gospel what some algorithm hack
columnist says. If you come away
with anything from this article, I’ll
have done my job if you under-
stand the big-Oh notation and its
drawbacks, and the importance of
profiling your code.

Mea Culpa
Unfortunately, I didn’t get round to
evaluating your responses to my
simulated annealing contest as
promised last month. Sorry about
that. I’ll announce the results next
month instead.

Julian Bucknall is enigmatic. Even
worse, he seems to be late with
everything, this article, his book,
his work, sigh. Julian can be
reached eventually at julianb@
turbopower.com. The code that
accompanies this article is
freeware and can be used as-is in
your own applications.

© Julian M Bucknall, 2000

function UniqueChars1(const aSt : string) : string;
var i : integer;
begin
Result := '';
for i := 1 to length(aSt) do begin
if (PosCh(aSt[i], Result, 1) = 0) then
Result := Result + aSt[i];

end;
end;
function UniqueChars(const aSt : string) : string;
var
i : integer;
Ch : char;
DestInx : integer;
CharSet : set of char;

begin

{clear the set of found characters}
FillChar(CharSet, sizeof(CharSet), 0);
{find the unique characters in the input string}
for i := 1 to length(aSt) do
Include(CharSet, aSt[i]);

{store the unique characters in the Result string}
SetLength(Result, length(aSt));
DestInx := 0;
for Ch := #0 to #255 do
if (Ch in CharSet) then begin
inc(DestInx);
Result[DestInx] := Ch;

end;
{readjust the length of the result string}
SetLength(Result, DestInx);

end;

➤ Listing 9: Two ways to find the
unique characters in a string.

	Endless Quest
	TNT For The Brain
	Morphing Thru Time
	Out From The Deep
	Beyond The Invisible
	Second Chapter
	Mea Culpa

